
1

Programming and frameworks for ML

Data Cleaning with Python

2

About Me

 Big Data Consultant at Santander / Big Data Lecturer
● More than 20 years of experience in different environments,
technologies, customers, countries ...

● Passionate about data and technology
● Enthusiastic about Big Data world and NoSQL

daniel.villanueva@immune.institute

3

Agenda

● Introduction
● Widening tables
● Narrowing down tables
● Separating columns
● Joining columns
● Missing data
● Dropping duplicates
● Data Types
● Data Formating
● Regex

4

Clean data

Happy families are all alike;
every unhappy family is
unhappy in its own way.

5

Clean data

● A clean dataset is easy to analyze, model or
visualize

Tidy datasets are all alike,
but every messy dataset is
messy in its own way.

6

Definition

● A unit of analysis represents the entity being
analysed in a study, and which contains similar
features

7

Definition

● An observation is data collected by observing
behavior, events, or physical features.

8

Definition

● A variable is a property or feature that can
change depending on certain factors (the person,
the weather, the country, etc.)

9

Definition

● A variable can take different values, which can be
measured or observed.

10

Rules

● Each variable must be in its own column and has
to have the correct type

● Each observation should be in its own row (and
cannot be duplicated or empty)

● Each value must have its own cell and has to
have the correct format

● Each unit of analysis must be in its own table

11

Formats of a dataset

● We will display the same dataset in several formats

12

Formats of a dataset

● Variables such as values ...

13

Formats of a dataset

● A single column with several features ...

14

Formats of a dataset

● A feature separated into several columns...

15

Formats of a dataset

● A separate unit of analysis in several tables
● Values in columns instead of cells ...

16

Formats of a dataset

● Features with empty values, duplicated and
incorrect format …

17

Agenda

● Introduction
● Widening tables
● Narrowing down tables
● Separating columns
● Joining columns
● Missing data
● Dropping duplicates
● Data Types
● Data Formating
● Regex

18

Widening tables

● Let’s fix the ‘variable as values’ problem …

19

Widening tables

● The pivot_table() function is used to distribute a
key/value pair across the columns of the table

20

Widening tables

● We have to use the first aggregation function if the
values are not numbers …

21

Widening tables

● In the case of having a DataFrame with more than
3 columns ...

22

Widening tables

23

Converting Row names into Columns

● A cleaned dataframe have all variables as columns
● We can reset the index after df.pivot_table() is

applied using the reset_index() and
rename_axis() functions

24

Converting Row names into Columns

● This procedure aplies in case that we have a
dataset with variables as row indexes

● In this case only reset_index() function is neeed

25

Values as Variables – Especial Case

● A special case is when we find that in the first row
of the dataset are our variables

● Pandas does not have a specific function to
perform this task. First we have to rename the
columns and then delete the row from the dataset

26

Exercise 1 (1/2)

● Load the following tables from the 'tables.xlsx' file

import pandas as pd

table1 = pd.read_excel('Tables.xlsx', 'table1')
table2 = pd.read_excel('Tables.xlsx', 'table2')
table3 = pd.read_excel('Tables.xlsx', 'table3')
table4a = pd.read_excel('Tables.xlsx', 'table4a')
table4b = pd.read_excel('Tables.xlsx', 'table4b')
table5 = pd.read_excel('Tables.xlsx', 'table5')
table6 = pd.read_excel('Tables.xlsx', 'table6')
table7= pd.read_excel('Tables.xlsx', 'table7')
table8 = pd.read_excel('Tables.xlsx', 'table8')
table9 = pd.read_excel('Tables.xlsx', 'table9')

27

Exercise 1 (2/2)

● Converts the dataset "table2" into a clean dataset,
as seen in "table1"

29

Exercise 2

● Convert the dataset "table1" into another one
showing the evolution of the population by years

31

Agenda

● Introduction
● Widening tables
● Narrowing down tables
● Separating columns
● Joining columns
● Missing data
● Dropping duplicates
● Data Types
● Data Formating
● Regex

32

Narrowing down tables

● Let’s fix the ‘Value as Column’ problem …

33

Narrowing down tables

● The melt() function takes multiple columns and
collects them into a key/value pair

34

Narrowing down tables

● We can ‘reserve’ as much columns as we want

35

Narrowing down tables

● We can also specify the names of the variable and
value columns with the var_name and
value_name parameters

36

Exercise 3

● Convert the dataset "table1" into a narrow table
with the following shape:

38

Exercise 4

● Converts the datasets "table4a" and "table4b" into a
clean dataset, as seen in "table1"

40

Agenda

● Introduction
● Widening tables
● Narrowing down tables
● Separating columns
● Joining columns
● Missing data
● Dropping duplicates
● Data Types
● Data Formating
● Regex

41

Separating columns

● We are to fix the ‘Two values in one column’
problem …

42

Separating columns

● Another common operation is to separate the value
of a column into several columns ...

43

Separating columns

● Another common operation is to separate the value
of a column into several columns ...

44

Exercise 5

● Converts the dataset "table3" into a clean dataset,
as seen in "table1"

● Make sure the new columns have the int datatype

df = table3.copy()

46

Agenda

● Introduction
● Widening tables
● Narrowing down tables
● Separating columns
● Joining columns
● Missing data
● Dropping duplicates
● Data Types
● Data Formating
● Regex

47

Joining columns

● We are to fix the ‘Same value in two diferent
columns’ problem ...

48

Joining columns

● There are times when we need to join two columns
into one...

49

Exercise 6

● Converts the dataset "table5" into a clean dataset,
as seen in "table1"

● Make sure the columns are the right type

51

Exercise 7

● Convert the dataset "table1" into a narrow table
with the following shape:

● Bunus: Can you done the exercise in one
sentence?

53

Agenda

● Introduction
● Widening tables
● Narrowing down tables
● Separating columns
● Joining columns
● Missing data
● Dropping duplicates
● Data Types
● Data Formating
● Regex

54

Missing Data

● Missing Data can generate problems when
trying to represent the data or apply it to an
algorithm

● It can hide or represent anomalies in the system
● It is necessary to identify and treat those

missing values (dropping the row or filling the
value)

55

Identifying Missing Data

Pandas provides several methods to identifying null
values.
● df.info() method to print a summary of a Dataframe
● df.isnull() / df.notnull() methods to detect

missing values

56

Identifying Missing Data

57

Identifying Missing Data

58

Removing missing data

● The dropna() function removes all rows that
contain any null value

● Note that we remove the full row (not only the
columns with missing values)

59

Removing missing data

● The 'how' parameter allows to specify if we want to
remove only the rows with all values missing

60

Removing missing data

● The 'subset' parameter allows you to specify a
subset of columns whose value must be null to
remove the row

61

Filling missing Data

● The fillna() function replaces missing values in a
dataset.

● This method can be applied to a whole columns in
a dataset or an individual column

● In the case of applying it to the entire data set, we
have to specify a dictionary where for each column
we specify the value that we are going to use to
replace a null or missing value

62

Missing Data Strategies

We can have different strategies to treat missing data:
● Remove the missing data (only when there are

enough samples in the dataset)
● Assign a fixed value
● Estimate the missing data with a statistical

function (mean, median, most frequent, etc.)
● Estimate the missing data with a more complex

method like an interpolation method
● Use the previous or subsequent row

63

Fixed Values

● In the case of fixed values we simply specify the
value that we can assign to a column (if the data is
missing)

64

Statistical Function

● In the case of a statistical function, we can
use a function like the mean or the median

65

Statistical Function

● In case of categorical columns we can not use
a mathematical function, we will use the most
frequent value of the column (mode)

66

Interpolation Method

● Other posiblitily is estimate missing values using an
interpolation method

https://pandas.pydata.org/docs/reference/api/
pandas.DataFrame.interpolate.html

67

Previous or subsequent row

● We could fill in missing values of a column with the
value of the previous row (or the subsequent
row)

● It is a common technique to treat data that comes
from Excel

68

Individual Columns

● The fillna() method can also be applied to an
individual column instead of applying it to all
columns at the same time

● We could use any of the strategies we have seen

69

Exercise 8

Over the ‘table8’ dataset:
● Determine which column(s) has the greatest number of NaNs.
● Fill the variable 'country' with the value of the subsequent row
● Fill in the null categorical variables with the nost frequent value.
● Fill the variable 'preTestScore' with the mean value
● Fill the variable 'postTestScore' with the median value
● Delete records with missing values in 'age'

71

Agenda

● Introduction
● Widening tables
● Narrowing down tables
● Separating columns
● Joining columns
● Missing data
● Dropping duplicates
● Data Types
● Data Formating
● Regex

72

Droping duplicates

● Dropping duplicates from your data sets is a task
you will may have to do as a Data Analyst.

● These duplicates may have been created through
lax data integrity or incorrect joining methods during
data extraction

73

Identifying Duplicates

● Before we remove duplicates, we first need to
check whether or not our data set contains
duplicates and how we define what a duplicate is.

● Depending on your requirements, a duplicate could
either be the duplication of an entire row or
duplication based on business rules such as an
employee have unique job numbers

74

Identifying Duplicates

● df.duplicate() lets you localize duplicates
● In this case search duplicates on the basis of all

columns

75

Identifying Duplicates

● df.duplicates() can also search for duplicates on
the basis of a subset of columns

● “keep” parameter specify which row is kept

76

Identifying Duplicates

77

Droping duplicate rows

● To drop duplicates we use the drop_duplicates()
function.

● We can use different strategies:
● Drop all duplicates, on the basis of all the columns
● Drop all duplicates, on the basis of a subset of

columns

78

Droping duplicate rows

● Drop all duplicates, on the basis of all the columns

79

Droping duplicate rows

● Drop all duplicates, on the basis of a subset of
columns

● Use the parameter “keep” indicating the row to be
deleted (‘first’ or ‘last’)

● Order the values of the dataset if you need a
specific order

80

Exercise 9

● On table1, keep only one distinct values for the
“Country” column (The rows with highest “cases”).

● Identify the rows that are going to be removed

Rows Removed:

Rows held :

82

Agenda

● Introduction
● Widening tables
● Narrowing down tables
● Separating columns
● Joining columns
● Missing data
● Dropping duplicates
● Data Types
● Data Formating
● Regex

83

Data Types

● Correctly interpreting the data type is crucial
● We should make sure that every column is

assigned to the correct data type
● Data types are one of those things that you don’t

tend to care about until you get an error or some
unexpected results

84

Data Types

● A data type is essentially an internal construct that
a programming language uses to understand how
to store and manipulate data

85

Identifying Data Types

● df.dtypes displays all the data types are in a
dataframe

● Additionally, the df.info() function shows even
more useful info

86

Converting Data Types

● The simplest way to convert a pandas column of
data to a different type is to use astype() function

87

Converting Data Types

● Since this data is a little more complex to convert,
we can build a custom function that we apply to
each value and convert to the appropriate
data type.

● We can use lambda functions too

88

Pandas helper functions

● Pandas has a middle ground between the astype()
function and the more complex custom functions

● pd.to_datetime() converts its argument to a
datetime

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html

89

Pandas helper functions

● If we have a dataframe with the columns ‘year’,
‘month’ and ‘day’ we can use pd.to_datetime()
to get a new datetime column

90

Pandas helper functions

● pd.to_numeric() helps us when astype() don’t
work properly

91

Pandas helper functions

● pd.to_numeric() has an argument named
‘errors’ that help us deal with convertions errors

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_numeric.html

92

Categorical Data

● Categoricals are a pandas data type corresponding to
categorical variables in statistics

● A categorical variable takes on a limited, and fixed,
number of possible values

● Categorical data might have an order
● Examples: gender, social class, blood type, country, etc.

93

Categorical Colums - Pros

● A string variable consisting of only a few different
values. Converting such a string variable to a
categorical variable will save some memory.

● The lexical order of a variable is not the same as the
logical order (“one”, “two”, “three”)

● It is a signal to other Python libraries that this column
should be treated as a categorical variable

94

Categorical Columns

● pd.Categorical() convert any column into a
category representing a categorical variable

95

Categorical Columns

● pd.Categorical() convert any column into a
category representing a categorical variable

96

Categorical Columns

● If we need that the categorical is treated as a ordered
categorical column we can use the ‘ordered’ param

97

Factorization

● Another alternative to categorize a column is
factorization (encode a column with a numerical
representation)

98

Exercise 10 (1/3)

Clean the ‘sales.csv’ dataset:
● The CustomerNumber is a float64 but it should be

an int64
● The value2016 and value2017 columns are stored

as objects, not numerical values such as a float64
or int64

● PercentGrowth and JanUnits are also stored as
objects not numerical values

● We have Month , Day and Year columns that
should be converted to datetime64

● The Active column should be a Boolean
● The Region column should be a category

99

Exercise 10 (2/3)

100

Exercise 10 (3/3)

102

Agenda

● Introduction
● Widening tables
● Narrowing down tables
● Separating columns
● Joining columns
● Missing data
● Dropping duplicates
● Data Types
● Data Formating
● Regex

103

Data Formating

● Data formatting is the process of transforming data
into a common format

● We can have different problems. For example:
● Different values for the same concept

Example: ‘New York’ & ‘NY’
● The data is not homogeneous

Example: ‘91123112’ vs ‘911 231 12’

104

Different values for the same concept

● It may happen that the same concept is
represented in different ways

● We can use the value_counts() function to list all
the values of a column.

105

Different values for the same concept

● The replace() function is a convenient method to
replace values in a column.

106

Different values for the same concept

● Another possibility is to use a user function to clean
the data …

107

Make the data homogeneous

● This aspect involves numeric and string data
● Text data should have all the same formatting style,

such as lower case, or don’t have white spaces at
the beginning of string

108

Make the data homogeneous

● Numeric data should have for example the same
number of digits after the point.

● Other techniques to make homogeneous numeric
data include Round up or Round down

109

Exercise 11

Clean the table9 dataset:
● On the field country, make sure that the same

country always has the same value
● Make the filed score homogeneous (2 decimals)
● Make the filed qualify homogeneous (lower case)

111

Agenda

● Introduction
● Widening tables
● Narrowing down tables
● Separating columns
● Joining columns
● Missing data
● Dropping duplicates
● Data Types
● Data Formating
● Regex

112

Text Data & Regex

● ~80% of data is Text
● Pandas provides a very rich set of functions to

manipulate strings (str prefix functions)
● There are several str methods which accept a

regex
● These methods works on the same line as Pythons

re module
● This will help us to:

● Check if a text meets a certain pattern
● Replace certain text pattern with another string
● Extract information from texts

113

Match Patterns

● Check if a text meets a certain pattern will help us,
for instance, to find the names starting with a particular
character or search for a pattern within a dataframe
column.

114

Match Patterns

● If we want to use flags with our regex expression
we cannot use query() function

115

Match Patterns

● Sometimes it is very useful to count the number of
times a certain pattern appears in a text.

116

Replacing Text

● Replacing certain text pattern with another string
help us to make our data homogeneous

117

Extracting information

● Extracting information from texts is extremely
common in our work as data scientists

● We have to use the capture groups

118

Extracting information

● It will allow us, for example, to extract the dates
from a text

119

Exercise 12

● Load the file ‘text.txt’ in Pandas
● Search the rows with ‘December’ or ‘Sept.’ literals
● Replace ‘December ’ by ‘12/’ and ‘Sept. ’ by ‘9/’
● Create a new column with the date extracted from

every line

120

Exercise 12

121

THANKS FOR YOUR ATTENTION
Daniel Villanueva Jiménez

daniel.villanueva@immune.institute

@dvillaj

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 38
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 51
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121

