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Programming and frameworks for ML

Data Cleaning with Python
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About Me

 Big Data Consultant at Santander / Big Data Lecturer
● More than 20 years of experience in different environments, 
technologies, customers, countries ...

● Passionate about data and technology
● Enthusiastic about Big Data world and NoSQL

daniel.villanueva@immune.institute
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Agenda

● Introduction
● Widening tables
● Narrowing down tables
● Separating columns
● Joining columns
● Missing data
● Dropping duplicates
● Data Types
● Data Formating
● Regex
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Clean data

Happy families are all alike; 
every unhappy family is 
unhappy in its own way.
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Clean data

●  A clean dataset is easy to analyze, model or 
visualize

Tidy datasets are all alike, 
but every messy dataset is 
messy in its own way.
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Definition

● A unit of analysis represents the entity being 
analysed in a study, and which contains similar 
features 
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Definition

● An observation is data collected by observing 
behavior, events, or physical features.
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Definition

●  A variable is a property or feature that can 
change depending on certain factors (the person, 
the weather, the country, etc.)
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Definition

● A variable can take different values, which can be 
measured or observed.
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Rules

● Each variable must be in its own column and has 
to have the correct type

● Each observation should be in its own row (and 
cannot be duplicated or empty)

● Each value must have its own cell and has to 
have the correct format

● Each unit of analysis must be in its own table
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Formats of a dataset

● We will display the same dataset in several formats
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Formats of a dataset

● Variables such as values ...
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Formats of a dataset

● A single column with several features ...
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Formats of a dataset

● A feature separated into several columns...
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Formats of a dataset

● A separate unit of analysis in several tables
● Values in columns instead of cells ...



16

Formats of a dataset

● Features with empty values, duplicated and 
incorrect format …



17

Agenda

● Introduction
● Widening tables
● Narrowing down tables
● Separating columns
● Joining columns
● Missing data
● Dropping duplicates
● Data Types
● Data Formating
● Regex
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Widening tables

● Let’s fix the ‘variable as values’ problem …



19

Widening tables

● The pivot_table() function is used to distribute a 
key/value pair across the columns of the table
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Widening tables

● We have to use the first aggregation function if the 
values are not numbers …
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Widening tables

● In the case of having a DataFrame with more than 
3 columns ...
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Widening tables
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Converting Row names into Columns

● A cleaned dataframe have all variables as columns
● We can reset the index after df.pivot_table() is 

applied using the reset_index() and 
rename_axis() functions
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Converting Row names into Columns

● This procedure aplies in case that we have a 
dataset with variables as row indexes

● In this case only reset_index() function is neeed
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Values as Variables – Especial Case

● A special case is when we find that in the first row 
of the dataset are our variables

● Pandas does not have a specific function to 
perform this task. First we have to rename the 
columns and then delete the row from the dataset 
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Exercise 1 (1/2)

● Load the following tables from the 'tables.xlsx' file

import pandas as pd

table1 = pd.read_excel('Tables.xlsx', 'table1')
table2 = pd.read_excel('Tables.xlsx', 'table2')
table3 = pd.read_excel('Tables.xlsx', 'table3')
table4a = pd.read_excel('Tables.xlsx', 'table4a')
table4b = pd.read_excel('Tables.xlsx', 'table4b')
table5 = pd.read_excel('Tables.xlsx', 'table5')
table6 = pd.read_excel('Tables.xlsx', 'table6')
table7= pd.read_excel('Tables.xlsx', 'table7')
table8 = pd.read_excel('Tables.xlsx', 'table8')
table9 = pd.read_excel('Tables.xlsx', 'table9')
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Exercise 1 (2/2)

● Converts the dataset "table2" into a clean dataset, 
as seen in "table1"
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Exercise 2

● Convert the dataset "table1" into another one 
showing the evolution of the population by years
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Agenda

● Introduction
● Widening tables
● Narrowing down tables
● Separating columns
● Joining columns
● Missing data
● Dropping duplicates
● Data Types
● Data Formating
● Regex
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Narrowing down tables

● Let’s fix the ‘Value as Column’ problem …
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Narrowing down tables

● The melt() function takes multiple columns and 
collects them into a key/value pair
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Narrowing down tables

● We can ‘reserve’ as much columns as we want
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Narrowing down tables

● We can also specify the names of the variable and 
value columns with the var_name and 
value_name parameters
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Exercise 3

● Convert the dataset "table1" into a narrow table 
with the following shape:
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Exercise 4

● Converts the datasets "table4a" and "table4b" into a 
clean dataset, as seen in "table1"
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Agenda

● Introduction
● Widening tables
● Narrowing down tables
● Separating columns
● Joining columns
● Missing data
● Dropping duplicates
● Data Types
● Data Formating
● Regex
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Separating columns

● We are to fix the ‘Two values in one column’ 
problem …
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Separating columns

● Another common operation is to separate the value 
of a column into several columns ...
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Separating columns

● Another common operation is to separate the value 
of a column into several columns ...
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Exercise 5

● Converts the dataset "table3" into a clean dataset, 
as seen in "table1"

● Make sure the new columns have the int datatype

df = table3.copy()



46

Agenda

● Introduction
● Widening tables
● Narrowing down tables
● Separating columns
● Joining columns
● Missing data
● Dropping duplicates
● Data Types
● Data Formating
● Regex
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Joining columns

● We are to fix the ‘Same value in two diferent 
columns’ problem ...
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Joining columns

● There are times when we need to join two columns 
into one...
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Exercise 6

● Converts the dataset "table5" into a clean dataset, 
as seen in "table1"

● Make sure the columns are the right type
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Exercise 7

● Convert the dataset "table1" into a narrow table 
with the following shape:

● Bunus: Can you done the exercise in one 
sentence?
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Agenda

● Introduction
● Widening tables
● Narrowing down tables
● Separating columns
● Joining columns
● Missing data
● Dropping duplicates
● Data Types
● Data Formating
● Regex



54

Missing Data

● Missing Data can generate problems when 
trying to represent the data or apply it to an 
algorithm 

● It can hide or represent anomalies in the system 
● It is necessary to identify and treat those 

missing values (dropping the row or filling the 
value)
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Identifying Missing Data

Pandas provides several methods to identifying null 
values.
● df.info() method to print a summary of a Dataframe
● df.isnull() / df.notnull() methods to detect 

missing values
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Identifying Missing Data
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Identifying Missing Data
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Removing missing data

● The dropna() function removes all rows that 
contain any null value

● Note that we remove the full row (not only the 
columns with missing values)
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Removing missing data

● The 'how' parameter allows to specify if we want to 
remove only the rows with all values missing
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Removing missing data

● The 'subset' parameter allows you to specify a 
subset of columns whose value must be null to 
remove the row 
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Filling missing Data

● The fillna() function replaces missing values in a 
dataset.

● This method can be applied to a whole columns in 
a dataset or an individual column

● In the case of applying it to the entire data set, we 
have to specify a dictionary where for each column 
we specify the value that we are going to use to 
replace a null or missing value 
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Missing Data Strategies

We can have different strategies to treat missing data:
● Remove the missing data (only when there are 

enough samples in the dataset)
● Assign a fixed value
● Estimate the missing data with a statistical 

function (mean, median, most frequent, etc.)
● Estimate the missing data with a more complex 

method like an interpolation method
● Use the previous or subsequent row
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Fixed Values

● In the case of fixed values we simply specify the 
value that we can assign to a column (if the data is 
missing)
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Statistical Function

● In the case  of a statistical function, we can 
use a function like the mean or the median
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Statistical Function

● In case of categorical columns we can not use 
a mathematical function, we will use the most 
frequent value of the column (mode)
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Interpolation Method

● Other posiblitily is estimate missing values using an 
interpolation method

https://pandas.pydata.org/docs/reference/api/
pandas.DataFrame.interpolate.html
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Previous or subsequent row

● We could fill in missing values of a column with the 
value of the previous row (or the subsequent 
row)

● It is a common technique to treat data that comes 
from Excel
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Individual Columns

● The fillna() method can also be applied to an 
individual column instead of applying it to all 
columns at the same time

● We could use any of the strategies we have seen 
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Exercise 8

Over the ‘table8’ dataset:
● Determine which column(s) has the greatest number of NaNs.
● Fill the variable 'country' with the value of the subsequent row
● Fill in the null categorical variables with the nost frequent value.
● Fill the variable 'preTestScore' with the mean value
● Fill the variable 'postTestScore' with the median value
● Delete records with missing values in 'age' 
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Agenda

● Introduction
● Widening tables
● Narrowing down tables
● Separating columns
● Joining columns
● Missing data
● Dropping duplicates
● Data Types
● Data Formating
● Regex
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Droping duplicates

● Dropping duplicates from your data sets is a task 
you will may have to do as a Data Analyst.

● These duplicates may have been created through 
lax data integrity or incorrect joining methods during 
data extraction
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Identifying Duplicates

● Before we remove duplicates, we first need to 
check whether or not our data set contains 
duplicates and how we define what a duplicate is.

● Depending on your requirements, a duplicate could 
either be the duplication of an entire row or 
duplication based on business rules such as an 
employee have unique job numbers
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Identifying Duplicates

● df.duplicate() lets you localize duplicates
● In this case search duplicates on the basis of all 

columns
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Identifying Duplicates

● df.duplicates() can also search for duplicates on 
the basis of a subset of columns

● “keep” parameter specify which row is kept
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Identifying Duplicates
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Droping duplicate rows

● To drop duplicates we use the drop_duplicates() 
function. 

● We can use different strategies:
● Drop all duplicates, on the basis of all the columns
● Drop all duplicates, on the basis of a subset of 

columns
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Droping duplicate rows

● Drop all duplicates, on the basis of all the columns
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Droping duplicate rows

● Drop all duplicates, on the basis of a subset of 
columns

● Use the parameter “keep” indicating the row to be 
deleted (‘first’ or ‘last’)

● Order the values of the dataset if you need a 
specific order
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Exercise 9

● On table1, keep only one distinct values for the 
“Country” column (The rows with highest “cases”).

● Identify the rows that are going to be removed

Rows Removed:

Rows held :
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Agenda

● Introduction
● Widening tables
● Narrowing down tables
● Separating columns
● Joining columns
● Missing data
● Dropping duplicates
● Data Types
● Data Formating
● Regex
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Data Types

● Correctly interpreting the data type is crucial 
● We should make sure that every column is 

assigned to the correct data type
● Data types are one of those things that you don’t 

tend to care about until you get an error or some 
unexpected results
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Data Types

● A data type is essentially an internal construct that 
a programming language uses to understand how 
to store and manipulate data
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Identifying Data Types

● df.dtypes displays all the data types are in a 
dataframe

● Additionally, the df.info() function shows even 
more useful info
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Converting Data Types

● The simplest way to convert a pandas column of 
data to a different type is to use astype() function
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Converting Data Types

● Since this data is a little more complex to convert, 
we can build a custom function that we apply to 
each value and convert to the appropriate 
data type.

● We can use lambda functions too
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Pandas helper functions

● Pandas has a middle ground between the astype() 
function and the more complex custom functions

● pd.to_datetime() converts its argument to a 
datetime

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html
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Pandas helper functions

● If we have a dataframe with the columns ‘year’, 
‘month’ and ‘day’ we can use pd.to_datetime() 
to get a new datetime column
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Pandas helper functions

● pd.to_numeric() helps us when astype() don’t 
work properly
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Pandas helper functions

● pd.to_numeric() has an argument named 
‘errors’ that help us deal with convertions errors

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_numeric.html
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Categorical Data

● Categoricals are a pandas data type corresponding to 
categorical variables in statistics

● A categorical variable takes on a limited, and fixed, 
number of possible values

● Categorical data might have an order
● Examples: gender, social class, blood type, country, etc.
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Categorical Colums - Pros

● A string variable consisting of only a few different 
values. Converting such a string variable to a 
categorical variable will save some memory.

● The lexical order of a variable is not the same as the 
logical order (“one”, “two”, “three”)

● It is a signal to other Python libraries that this column 
should be treated as a categorical variable
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Categorical Columns

● pd.Categorical() convert any column into a 
category representing a categorical variable
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Categorical Columns

● pd.Categorical() convert any column into a 
category representing a categorical variable
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Categorical Columns

● If we need that the categorical is treated as a ordered 
categorical column we can use the ‘ordered’ param
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Factorization

● Another alternative to categorize a column is 
factorization (encode a column with a numerical 
representation)
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Exercise 10 (1/3)

Clean the ‘sales.csv’ dataset:
● The CustomerNumber is a float64 but it should be 

an int64
● The value2016 and value2017 columns are stored 

as objects, not numerical values such as a float64 
or int64

● PercentGrowth and JanUnits are also stored as 
objects not numerical values

● We have Month , Day and Year columns that 
should be converted to datetime64

● The Active column should be a Boolean
● The Region column should be a category
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Exercise 10 (2/3)
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Exercise 10 (3/3)
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Agenda

● Introduction
● Widening tables
● Narrowing down tables
● Separating columns
● Joining columns
● Missing data
● Dropping duplicates
● Data Types
● Data Formating
● Regex
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Data Formating

● Data formatting is the process of transforming data 
into a common format

● We can have different problems. For example:
● Different values for the same concept

Example: ‘New York’ & ‘NY’
● The data is not homogeneous

Example: ‘91123112’ vs ‘911 231 12’
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Different values for the same concept

● It may happen that the same concept is 
represented in different ways

● We can use the value_counts() function to list all 
the values of a column.
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Different values for the same concept

● The replace() function is a convenient method to 
replace values in a column.
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Different values for the same concept

● Another possibility is to use a user function to clean 
the data …
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Make the data homogeneous

● This aspect involves numeric and string data
● Text data should have all the same formatting style, 

such as lower case, or don’t have white spaces at 
the beginning of string
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Make the data homogeneous

● Numeric data should have for example the same 
number of digits after the point.

● Other techniques to make homogeneous numeric 
data include Round up or Round down 
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Exercise 11

Clean the table9 dataset:
● On the field country, make sure that the same 

country always has the same value
● Make the filed score homogeneous (2 decimals)
● Make the filed qualify homogeneous (lower case)
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Agenda

● Introduction
● Widening tables
● Narrowing down tables
● Separating columns
● Joining columns
● Missing data
● Dropping duplicates
● Data Types
● Data Formating
● Regex
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Text Data & Regex

● ~80% of data is Text
● Pandas provides a very rich set of functions to 

manipulate strings (str prefix functions)
● There are several str methods which accept a 

regex
● These methods works on the same line as Pythons 

re module
● This will help us to:

● Check if a text meets a certain pattern
● Replace certain text pattern with another string
● Extract information from texts



113

Match Patterns

● Check if a text meets a certain pattern will help us, 
for instance, to find the names starting with a particular 
character or search for a pattern within a dataframe 
column.
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Match Patterns

● If we want to use flags with our regex expression 
we cannot use query() function
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Match Patterns

● Sometimes it is very useful to count the number of 
times a certain pattern appears in a text. 
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Replacing Text

● Replacing certain text pattern with another string 
help us to make our data homogeneous
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Extracting information

● Extracting information from texts is extremely 
common in our work as data scientists 

● We have to use the capture groups  
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Extracting information

● It will allow us, for example, to extract the dates 
from a text 
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Exercise 12

● Load the file ‘text.txt’ in Pandas
● Search the rows with ‘December’ or ‘Sept.’ literals
● Replace ‘December ’ by ‘12/’ and ‘Sept. ’ by ‘9/’
● Create a new column with the date extracted from 

every line
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Exercise 12
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THANKS FOR YOUR ATTENTION
Daniel Villanueva Jiménez

daniel.villanueva@immune.institute

@dvillaj
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